Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Front Immunol ; 15: 1335998, 2024.
Article in English | MEDLINE | ID: mdl-38469301

ABSTRACT

Introduction: In autoimmune diseases, autoreactive B cells comprise only the 0.1-0.5% of total circulating B cells. However, current first-line treatments rely on non-specific and general suppression of the immune system, exposing patients to severe side effects. For this reason, identification of targeted therapies for autoimmune diseases is an unmet clinical need. Methods: Here, we designed a novel class of immunotherapeutic molecules, Bi-specific AutoAntigen-T cell Engagers (BiAATEs), as a potential approach for targeting the small subset of autoreactive B cells. To test this approach, we focused on a prototype autoimmune disease of the kidney, membranous nephropathy (MN), in which phospholipase A2 receptor (PLA2R) serves as primary nephritogenic antigen. Specifically, we developed a BiAATE consisting of the immunodominant Cysteine-Rich (CysR) domain of PLA2R and the single-chain variable fragment (scFv) of an antibody against the T cell antigen CD3, connected by a small flexible linker. Results: BiAATE creates an immunological synapse between autoreactive B cells bearing an CysR-specific surface Ig+ and T cells. Ex vivo, the BiAATE successfully induced T cell-dependent depletion of PLA2R-specific B cells isolated form MN patients, sparing normal B cells. Systemic administration of BiAATE to mice transgenic for human CD3 reduced anti-PLA2R antibody levels following active immunization with PLA2R. Discussion: Should this approach be confirmed for other autoimmune diseases, BiAATEs could represent a promising off-the-shelf therapy for precision medicine in virtually all antibody-mediated autoimmune diseases for which the pathogenic autoantigen is known, leading to a paradigm shift in the treatment of these diseases.


Subject(s)
Autoantigens , Glomerulonephritis, Membranous , Humans , Animals , Mice , T-Lymphocytes , Antibodies , Immunotherapy , Polyesters
2.
Mol Immunol ; 168: 10-16, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368725

ABSTRACT

Complement alternative pathway (AP) dysregulation drives C3 glomerulopathy (C3G), a rare renal disorder characterized by glomerular C3 deposition and glomerular damage, for which no effective treatments are available. Blockade of complement C3 is emerging as a viable therapeutic option. In an earlier study we showed that SLN500, a small interfering RNA targeting liver C3 synthesis, was able to limit AP dysregulation and glomerular C3d deposits in mice with partial factor H (FH) deficiency (Cfh+/- mice). Here, we assessed the pharmacological effects of SLN501 - an optimized SLN500 version - in mice with complete FH deficiency (Cfh-/- mice) that exhibit a more severe C3G phenotype. SLN501 effectively prevented liver C3 synthesis, thus limiting AP dysregulation, glomerular C3d deposits and the development of ultrastructural alterations. These data provide firm evidence of the use of siRNA-mediated liver C3 gene silencing as a potential therapy for treating C3G patients with either partial or complete FH loss of function.


Subject(s)
Complement Factor H/deficiency , Glomerulonephritis, Membranoproliferative , Hereditary Complement Deficiency Diseases , Kidney Diseases , Humans , Animals , Mice , Complement C3/genetics , Complement C3/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Complement Factor H/genetics , Complement Factor H/therapeutic use , Glomerulonephritis, Membranoproliferative/genetics , Glomerulonephritis, Membranoproliferative/drug therapy , Glomerulonephritis, Membranoproliferative/metabolism , Complement Pathway, Alternative
3.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003732

ABSTRACT

Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Diabetes Mellitus, Experimental/metabolism , Capillaries/pathology , Glycocalyx/metabolism , Lanthanum , Kidney/pathology , Mice, Inbred Strains
4.
PLoS One ; 18(10): e0291909, 2023.
Article in English | MEDLINE | ID: mdl-37816025

ABSTRACT

Sirtuin 3 (SIRT3), the main deacetylase of mitochondria, modulates the acetylation levels of substrates governing metabolism and oxidative stress. In the kidney, we showed that SIRT3 affects the proper functioning of high energy-demanding cells, such as tubular cells and podocytes. Less is known about the role of SIRT3 in regulating endothelial cell function and its impact on the progression of kidney disease. Here, we found that whole body Sirt3-deficient mice exhibited reduced renal capillary density, reflecting endothelial dysfunction, and VEGFA expression compared to wild-type mice. This was paralleled by activation of hypoxia signaling, upregulation of HIF-1α and Angiopietin-2, and oxidative stress increase. These alterations did not result in kidney disease. However, when Sirt3-deficient mice were exposed to the nephrotoxic stimulus Adriamycin (ADR) they developed aggravated endothelial rarefaction, altered VEGFA signaling, and higher oxidative stress compared to wild-type mice receiving ADR. As a result, ADR-treated Sirt3-deficient mice experienced a more severe injury with exacerbated albuminuria, podocyte loss and fibrotic lesions. These data suggest that SIRT3 is a crucial regulator of renal vascular homeostasis and its dysregulation is a predisposing factor for kidney disease. By extension, our findings indicate SIRT3 as a pharmacologic target in progressive renal disease whose treatments are still imperfect.


Subject(s)
Kidney Diseases , Sirtuin 3 , Vascular Diseases , Mice , Animals , Sirtuin 3/metabolism , Kidney/metabolism , Oxidative Stress , Kidney Diseases/genetics , Kidney Diseases/metabolism , Mitochondria/metabolism , Vascular Diseases/metabolism
5.
iScience ; 26(10): 107826, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37752946

ABSTRACT

Diabetes mellitus and alterations in thyroid hormone (TH) signaling are closely linked. Though the role of TH signaling in cell differentiation and growth is well known, it remains unclear whether its alterations contribute to the pathobiology of diabetic cells. Here, we aim to investigate whether the administration of exogenous T3 can counteract the cellular remodeling that occurs in diabetic cardiomyocytes, podocytes, and pancreatic beta cells. Treating diabetic rats with T3 prevents dedifferentiation, pathological growth, and ultrastructural alterations in podocytes and cardiomyocytes. In vitro, T3 reverses glucose-induced growth in human podocytes and cardiomyocytes, restores cardiomyocyte cytoarchitecture, and reverses pathological alterations in kidney and cardiac organoids. Finally, T3 treatment counteracts glucose-induced transdifferentiation, cell growth, and loss in pancreatic beta cells through TH receptor alpha1 activation. Our studies indicate that TH signaling activation substantially counteracts diabetes-induced pathological remodeling, and provide a potential therapeutic approach for the treatment of diabetes and its complications.

6.
Mol Immunol ; 161: 25-32, 2023 09.
Article in English | MEDLINE | ID: mdl-37481826

ABSTRACT

Uncontrolled activation of the alternative pathway (AP) of complement, due to genetic and/or acquired defects, plays a primary pathogenetic role in C3 glomerulopathy (C3G), a rare and heterogeneous disease characterised by predominant C3 fragment deposition within the glomerulus, as well as glomerular damage. There are currently no approved disease-specific treatments for C3G, but new drugs that directly counteract AP dysregulation, targeting components of the pathway, have opened promising new perspectives for managing the disease. Complement factor B (FB), which is primarily synthesised by hepatocytes, is a key component of the AP, as it drives the central amplification loop of the complement system. In this study we used a GalNAc (N-Acetylgalactosamine)-conjugated siRNA to selectively target and suppress liver FB expression in two mouse models characterised by the complete (Cfh-/- mice) or partial (Cfh+/-) loss of function of complement factor H (FH). Homozygous deletion of FH induced a severe C3G phenotype, with strong dysregulation of the AP of complement, glomerular C3 deposition and almost complete C3 consumption. Mice with a heterozygous deletion of FH had intermediate C3 levels and exhibited slower disease progression, resembling human C3G more closely. Here we showed that FB siRNA treatment did not improve serum C3 levels, nor limit glomerular C3 deposition in Cfh-/- mice, while it did normalise circulating C3 levels, reduce glomerular C3 deposits, and limit mesangial electron-dense deposits in Cfh+/- mice. The present data provide important insights into the potential benefits and limitations of FB-targeted inhibition strategies and suggest RNA interference-mediated FB silencing in the liver as a possible therapeutic approach for treating C3G patients with FH haploinsufficiency.


Subject(s)
Glomerulonephritis, Membranoproliferative , Kidney Diseases , Humans , Animals , Mice , Complement Factor B/genetics , Complement Factor B/metabolism , Complement C3 , Homozygote , Sequence Deletion , Complement Factor H/genetics , Liver/metabolism , Complement Pathway, Alternative/genetics , Glomerulonephritis, Membranoproliferative/genetics , Glomerulonephritis, Membranoproliferative/therapy , Glomerulonephritis, Membranoproliferative/metabolism
7.
Sci Rep ; 13(1): 11392, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452090

ABSTRACT

The spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can interact with endothelial cells. However, no studies demonstrated the direct effect of the spike protein subunit 1 (S1) in inducing lung vascular damage and the potential mechanisms contributing to lung injury. Here, we found that S1 injection in mice transgenic for human angiotensin converting enzyme 2 (ACE2) induced early loss of lung endothelial thromboresistance at 3 days, as revealed by thrombomodulin loss and von Willebrand factor (vWF) increase. In parallel, vascular and epithelial C3 deposits and enhanced C3a receptor (C3aR) expression were observed. These changes preceded diffuse alveolar damage and lung vascular fibrin(ogen)/platelets aggregates at 7 days, as well as inflammatory cell recruitment and fibrosis. Treatment with C3aR antagonist (C3aRa) inhibited lung C3 accumulation and C3a/C3aR activation, limiting vascular thrombo-inflammation and fibrosis. Our study demonstrates that S1 triggers vascular dysfunction and activates complement system, instrumental to lung thrombo-inflammatory injury. By extension, our data indicate C3aRa as a valuable therapeutic strategy to limit S1-dependent lung pathology.


Subject(s)
Complement C3a , Endothelial Cells , Receptors, Complement , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Endothelial Cells/cytology , Endothelial Cells/virology , Lung/pathology , Lung/virology , Complement C3a/metabolism , Receptors, Complement/metabolism , Fibrosis , Mice, Transgenic , Humans , Animals , Mice , COVID-19 , Inflammation
8.
Cells ; 11(20)2022 10 21.
Article in English | MEDLINE | ID: mdl-36291179

ABSTRACT

A reduced nephron number at birth, due to critical gestational conditions, including maternal malnutrition, is associated with the risk of developing hypertension and chronic kidney disease in adulthood. No interventions are currently available to augment nephron number. We have recently shown that sirtuin 3 (SIRT3) has an important role in dictating proper nephron endowment. The present study explored whether SIRT3 stimulation, by means of supplementation with nicotinamide riboside (NR), a precursor of the SIRT3 co-substrate nicotinamide adenine dinucleotide (NAD+), was able to improve nephron number in a murine model of a low protein (LP) diet. Our findings show that reduced nephron number in newborn mice (day 1) born to mothers fed a LP diet was associated with impaired renal SIRT3 expression, which was restored through supplementation with NR. Glomerular podocyte density, as well as the rarefaction of renal capillaries, also improved through NR administration. In mechanistic terms, the restoration of SIRT3 expression through NR was mediated by the induction of proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α). Moreover, NR restored SIRT3 activity, as shown by the reduction of the acetylation of optic atrophy 1 (OPA1) and superoxide dismutase 2 (SOD2), which resulted in improved mitochondrial morphology and protection against oxidative damage in mice born to mothers fed the LP diet. Our results provide evidence that it is feasible to prevent nephron mass shortage at birth through SIRT3 boosting during nephrogenesis, thus providing a therapeutic option to possibly limit the long-term sequelae of reduced nephron number in adulthood.


Subject(s)
Sirtuin 3 , Mice , Animals , Sirtuin 3/metabolism , NAD , Diet, Protein-Restricted , PPAR gamma , Nephrons/metabolism , Dietary Supplements
9.
Cells ; 11(15)2022 08 05.
Article in English | MEDLINE | ID: mdl-35954280

ABSTRACT

Rapidly progressive crescentic glomerulonephritis associated with anti-neutrophil cytoplasmic antibodies (ANCA-GN) is a major cause of renal failure. Current immunosuppressive therapies are associated with severe side effects, intensifying the need for new therapeutic strategies. The activation of Mas receptor/Angiotensin-(1-7) axis exerted renoprotection in chronic kidney disease. Here, we investigated the effect of adding the lanthionine-stabilized cyclic form of angiotensin-1-7 [cAng-(1-7)] to cyclophosphamide in a rat model of ANCA-GN. At the onset of proteinuria, Wistar Kyoto rats with ANCA-GN received vehicle or a single bolus of cyclophosphamide, with or without daily cAng-(1-7). Treatment with cAng-(1-7) plus cyclophosphamide reduced proteinuria by 85% vs. vehicle, and by 60% vs. cyclophosphamide, and dramatically limited glomerular crescents to less than 10%. The addition of cAng-(1-7) to cyclophosphamide protected against glomerular inflammation and endothelial rarefaction and restored the normal distribution of parietal epithelial cells. Ultrastructural analysis revealed a preserved GBM, glomerular endothelium and podocyte structure, demonstrating that combination therapy provided an additional layer of renoprotection. This study demonstrates that adding cAng-(1-7) to a partially effective dose of cyclophosphamide arrests the progression of renal disease in rats with ANCA-GN, suggesting that cAng-(1-7) could be a novel clinical approach for sparing immunosuppressants.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic , Glomerulonephritis , Angiotensin I , Animals , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Glomerulonephritis/drug therapy , Peptide Fragments , Proteinuria/complications , Rats , Rats, Inbred WKY
10.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955472

ABSTRACT

Sirtuin 3 (SIRT3) is the primary mitochondrial deacetylase that controls the antioxidant pathway and energy metabolism. We previously found that renal Sirt3 expression and activity were reduced in mice with type 2 diabetic nephropathy associated with oxidative stress and mitochondrial abnormalities and that a specific SIRT3 activator improved renal damage. SIRT3 is modulated by diet, and to assess whether Sirt3 deficiency aggravates mitochondrial damage and accelerates kidney disease in response to nutrient overloads, wild-type (WT) and Sirt3-/- mice were fed a high-fat-diet (HFD) or standard diet for 8 months. Sirt3-/- mice on HFD exhibited earlier and more severe albuminuria compared to WT mice, accompanied by podocyte dysfunction and glomerular capillary rarefaction. Mesangial matrix expansion, tubular vacuolization and inflammation, associated with enhanced lipid accumulation, were more evident in Sirt3-/- mice. After HFD, kidneys from Sirt3-/- mice showed more oxidative stress than WT mice, mitochondria ultrastructural damage in tubular cells, and a reduction in mitochondrial mass and energy production. Our data demonstrate that Sirt3 deficiency renders mice more prone to developing oxidative stress and mitochondrial abnormalities in response to HFD, resulting in more severe kidney diseases, and this suggests that mitochondria protection may be a method to prevent HFD-induced renal injury.


Subject(s)
Diabetic Nephropathies , Sirtuin 3/metabolism , Animals , Antioxidants/metabolism , Diet, High-Fat , Mice , Mice, Knockout , Oxidative Stress , Sirtuin 3/genetics
11.
Cells ; 11(11)2022 05 26.
Article in English | MEDLINE | ID: mdl-35681450

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS. Mice coinjected with Stx2/LPS exhibited glomerular podocyte and tubular C3 deposits and C3aR overexpression associated with cell damage, which were limited by C3aR antagonist treatment. C3a promoted renal injury by affecting mitochondrial wellness as demonstrated by data showing that C3aR blockade reduced mitochondrial ultrastructural abnormalities and preserved mitochondrial mass and energy production. In cultured podocytes and tubular cells, C3a caused altered mitochondrial fragmentation and distribution, and reduced anti-oxidant SOD2 activity. Stx2 potentiated the responsiveness of renal cells to the detrimental effects of C3a through increased C3aR protein expression. These results indicate that C3aR may represent a novel target in Stx-associated HUS for the preservation of renal cell integrity through the maintenance of mitochondrial function.


Subject(s)
Hemolytic-Uremic Syndrome , Podocytes , Receptors, Complement , Shiga Toxin 2 , Animals , Hemolytic-Uremic Syndrome/etiology , Hemolytic-Uremic Syndrome/metabolism , Kidney Glomerulus , Mice , Mitochondria/metabolism , Podocytes/metabolism , Receptors, Complement/metabolism , Shiga Toxin 2/pharmacology
12.
J Immunol ; 208(7): 1772-1781, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35277417

ABSTRACT

Alternative pathway complement dysregulation with abnormal glomerular C3 deposits and glomerular damage is a key mechanism of pathology in C3 glomerulopathy (C3G). No disease-specific treatments are currently available for C3G. Therapeutics inhibiting complement are emerging as a potential strategy for the treatment of C3G. In this study, we investigated the effects of N-acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) targeting the C3 component of complement that inhibits liver C3 expression in the C3G model of mice with heterozygous deficiency of factor H (Cfh +/- mice). We showed a duration of action for GalNAc-conjugated C3 siRNA in reducing the liver C3 gene expression in Cfh +/- mice that were dosed s.c. once a month for up to 7 mo. C3 siRNA limited fluid-phase alternative pathway activation, reducing circulating C3 fragmentation and activation of factor B. Treatment with GalNAc-conjugated C3 siRNA reduced glomerular C3d deposits in Cfh +/- mice to levels similar to those of wild-type mice. Ultrastructural analysis further revealed the efficacy of the C3 siRNA in slowing the formation of mesangial and subendothelial electron-dense deposits. The present data indicate that RNA interference-mediated C3 silencing in the liver may be a relevant therapeutic strategy for treating patients with C3G associated with the haploinsufficiency of complement factor H.


Subject(s)
Glomerulonephritis, Membranoproliferative , Kidney Diseases , Animals , Complement C3/genetics , Complement C3/metabolism , Complement Factor B/metabolism , Complement Factor H/genetics , Complement Pathway, Alternative/genetics , Glomerulonephritis, Membranoproliferative/pathology , Humans , Mice , RNA, Small Interfering/genetics
13.
J Pathol ; 256(4): 468-479, 2022 04.
Article in English | MEDLINE | ID: mdl-35000230

ABSTRACT

In addition to having blood glucose-lowering effects, inhibitors of sodium glucose cotransporter 2 (SGLT2) afford renoprotection in diabetes. We sought to investigate which components of the glomerular filtration barrier could be involved in the antiproteinuric and renoprotective effects of SGLT2 inhibition in diabetes. BTBR (black and tan, brachyuric) ob/ob mice that develop a type 2 diabetic nephropathy received a standard diet with or without empagliflozin for 10 weeks, starting at 8 weeks of age, when animals had developed albuminuria. Empagliflozin caused marked decreases in blood glucose levels and albuminuria but did not correct glomerular hyperfiltration. The protective effect of empagliflozin against albuminuria was not due to a reduction in podocyte damage as empagliflozin did not affect the larger podocyte filtration slit pore size nor the defective expression of nephrin and nestin. Empagliflozin did not reduce the thickening of the glomerular basement membrane. In BTBR ob/ob mice, the most profound abnormality seen using electron microscopy was in the endothelial aspect of the glomerular capillary, with significant loss of endothelial fenestrations. Remarkably, empagliflozin ameliorated the subverted microvascular endothelial ultrastructure. Caveolae and bridging diaphragms between adjacent endothelial fenestrae were seen in diabetic mice and associated with increased expression of caveolin-1 and the appearance of PV-1. These endothelial abnormalities were limited by the SGLT2 inhibitor. Although no expression of SGLT2 was found in glomerular endothelial cells, SGLT2 was expressed in the podocytes of diabetic mice. VEGF-A, which is a known stimulus for endothelial caveolin-1 and PV-1, was increased in podocytes of BTBR ob/ob mice and normalized by SGLT2 inhibitor treatment. Thus, empagliflozin's protective effect on the glomerular endothelium of diabetic mice could be due to a limitation of the paracrine signaling of podocyte-derived VEGF-A that resulted in a reduction of the abnormal endothelial caveolin-1 and PV-1, with the consequent preservation of glomerular endothelial function and permeability. © 2022 The Pathological Society of Great Britain and Ireland.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Albuminuria/drug therapy , Albuminuria/pathology , Albuminuria/prevention & control , Animals , Benzhydryl Compounds , Blood Glucose/metabolism , Caveolin 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Endothelial Cells/metabolism , Female , Glomerular Basement Membrane/metabolism , Glucosides , Humans , Male , Mice , Signal Transduction , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Vascular Endothelial Growth Factor A/metabolism
14.
Sci Rep ; 11(1): 23580, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880332

ABSTRACT

Abnormal kidney development leads to lower nephron number, predisposing to renal diseases in adulthood. In embryonic kidneys, nephron endowment is dictated by the availability of nephron progenitors, whose self-renewal and differentiation require a relatively repressed chromatin state. More recently, NAD+-dependent deacetylase sirtuins (SIRTs) have emerged as possible regulators that link epigenetic processes to the metabolism. Here, we discovered a novel role for the NAD+-dependent deacylase SIRT3 in kidney development. In the embryonic kidney, SIRT3 was highly expressed only as a short isoform, with nuclear and extra-nuclear localisation. The nuclear SIRT3 did not act as deacetylase but exerted de-2-hydroxyisobutyrylase activity on lysine residues of histone proteins. Extra-nuclear SIRT3 regulated lysine 2-hydroxyisobutyrylation (Khib) levels of phosphofructokinase (PFK) and Sirt3 deficiency increased PFK Khib levels, inducing a glycolysis boost. This altered Khib landscape in Sirt3-/- metanephroi was associated with decreased nephron progenitors, impaired nephrogenesis and a reduced number of nephrons. These data describe an unprecedented role of SIRT3 in controlling early renal development through the regulation of epigenetics and metabolic processes.


Subject(s)
Glycolysis/genetics , Kidney Diseases/genetics , Organogenesis/genetics , Protein Processing, Post-Translational/genetics , Sirtuin 3/genetics , Animals , Cell Differentiation/genetics , Cell Nucleus/genetics , Chromatin/genetics , Epigenesis, Genetic/genetics , Kidney/physiology , Lysine/genetics , Mice , Mice, Inbred C57BL , NAD/genetics , Nephrons/physiology , Phosphofructokinases/genetics
15.
Stem Cell Res ; 55: 102476, 2021 08.
Article in English | MEDLINE | ID: mdl-34339993

ABSTRACT

Inadequate production of erythropoietin (EPO) leads to anemia. Although erythropoiesis-stimulating agents can be used to treat anemia, these approaches are limited by high costs, adverse effects, and the need for frequent injections. Developing methods for the generation and transplantation of EPO-producing cells would allow for the design of personalized and complication-free therapeutic solutions. In mice, the first EPO source are neural crest cells (NCCs), which ultimately migrate to the fetal kidney to differentiate into EPO-producing fibroblasts. In humans however, it remains unknown whether NCCs can produce EPO in response to hypoxia. Here, we developed a new protocol to differentiate human induced pluripotent stem cells (hiPSCs) into NCCs and showed that cthese cells can produce functional EPO that can induce human CD34+ hematopoietic progenitor differentiation into erythroblasts in vitro. Moreover, we showed that hiPSC-derived NCCs can be embedded in clinical-grade atelocollagen scaffolds and subcutaneously transplanted into anemic mice to produce human EPO, accelerate hematocrit recovery, and induce erythropoiesis in the spleen. Our findings provide unprecedented evidence of the ability of human NCCs to produce functional EPO in response to hypoxia, and proof-of-concept for the potential clinical use of NCC-containing scaffolds as cell therapy for renal and non-renal anemia.


Subject(s)
Anemia , Erythropoietin , Induced Pluripotent Stem Cells , Anemia/chemically induced , Anemia/therapy , Animals , Erythropoiesis , Humans , Mice , Neural Crest
16.
Nephron ; 145(4): 428-444, 2021.
Article in English | MEDLINE | ID: mdl-33910203

ABSTRACT

BACKGROUND/AIM: Necrotizing crescentic glomerulonephritis (GN) associated with anti-neutrophil cytoplasmic antibodies (ANCA) against myeloperoxidase (MPO) is a devastating disease that quickly progresses to kidney failure. Current therapies are broadly immunosuppressive and associated with adverse effects. We wanted to set up a model that could be suitable for testing narrowly targeted therapies. METHODS: The model was constructed in male Wistar Kyoto rats through injections of human MPO (hMPO) and pertussis toxin, followed by a sub-nephritogenic dose of sheep anti-rat glomerular basement membrane (GBM) serum to boost the disease. Rats were monitored for 35 days. Rats given hMPO alone, saline, or human serum albumin with or without anti-GBM serum were also studied. RESULTS: Rats receiving hMPO developed circulating anti-hMPO and anti-rat MPO antibodies. Challenging hMPO-immunized rats with the anti-GBM serum led to more glomerular neutrophil infiltration and MPO release, and severe haematuria, heavy proteinuria, and higher blood urea nitrogen than hMPO alone. Pauci-immune GN developed with crescents, affecting 25% of glomeruli. The majority of crescents were fibrocellular. Necrotizing lesions and Bowman capsule ruptures were detected. Cells double positive for claudin-1 (a marker of parietal epithelial cells [PECs]) and neural cell adhesion molecule (NCAM; progenitor PECs) were present in crescents. Double staining for NCAM and Ki-67 established proliferative status of progenitor PECs. Podocyte damage was associated with endothelial and GBM changes by electron microscopy. Monocyte/macrophages and CD4+ and CD8+ T cells accumulated in glomeruli and the surrounding area and in the tubulointerstitium. Lung haemorrhage also manifested. CONCLUSION: This model reflects histological lesions of human ANCA-associated rapidly progressive GN and may be useful for investigating new therapies.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic/immunology , Glomerulonephritis/immunology , Peroxidase/immunology , Animals , Blood Urea Nitrogen , Bowman Capsule/pathology , Epithelial Cells/pathology , Glomerular Basement Membrane/immunology , Hematuria/etiology , Humans , Kidney Glomerulus/pathology , Male , Neutrophil Infiltration , Pertussis Toxin/pharmacology , Proteinuria/etiology , Rats , Rats, Inbred WKY
17.
Sci Rep ; 10(1): 8418, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439965

ABSTRACT

More effective treatments for diabetic nephropathy remain a major unmet clinical need. Increased oxidative stress is one of the most important pathological mechanisms that lead to kidney damage and functional impairment induced by diabetes. Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase and critically regulates cellular reactive oxygen species (ROS) production and detoxification. Honokiol is a natural biphenolic compound that, by activating mitochondrial SIRT3, can carry out anti-oxidant, anti-inflammatory and anti-fibrotic activities. Here, we sought to investigate the renoprotective effects of honokiol in BTBR ob/ob mice with type 2 diabetes. Diabetic mice were treated with vehicle or honokiol between the ages of 8 and 14 weeks. Wild-type mice served as controls. Renal Sirt3 expression was significantly reduced in BTBR ob/ob mice, and this was associated with a reduction in its activity and increased ROS levels. Selective activation of SIRT3 through honokiol administration translated into the attenuation of albuminuria, amelioration of glomerular damage, and a reduction in podocyte injury. SIRT3 activation preserved mitochondrial wellness through the activation of SOD2 and the restoration of PGC-1α expression in glomerular cells. Additionally, the protective role of SIRT3 in glomerular changes was associated with enhanced tubular Sirt3 expression and upregulated renal Nampt levels, indicating a possible tubule-glomerulus retrograde interplay, which resulted in improved glomerular SIRT3 activity. Our results demonstrate the hitherto unknown renoprotective effect of SIRT3 against diabetic glomerular disease and suggest that the pharmacological modulation of SIRT3 activity is a possible novel approach to treating diabetic nephropathy.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Biphenyl Compounds/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/drug therapy , Kidney Glomerulus/pathology , Lignans/therapeutic use , Albuminuria/prevention & control , Animals , Cytokines/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Male , Mice , Mice, Obese , Mitochondria/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Podocytes/drug effects , Reactive Oxygen Species/metabolism , Sirtuin 3/metabolism , Superoxide Dismutase/metabolism
18.
JCI Insight ; 5(5)2020 03 12.
Article in English | MEDLINE | ID: mdl-32161193

ABSTRACT

Renal activation of the complement system has been described in patients with diabetic nephropathy (DN), although its pathological relevance is still ill-defined. Here, we studied whether glomerular C3a, generated by uncontrolled complement activation, promotes podocyte damage, leading to proteinuria and renal injury in mice with type 2 diabetes. BTBR ob/ob mice exhibited podocyte loss, albuminuria, and glomerular injury accompanied by C3 deposits and increased C3a and C3a receptor (C3aR) levels. Decreased glomerular nephrin and α-actinin4 expression, coupled with integrin-linked kinase induction, were also observed. Treatment of DN mice with a C3aR antagonist enhanced podocyte density and preserved their phenotype, limiting proteinuria and glomerular injury. Mechanistically, ultrastructural and functional mitochondrial alterations, accompanied by downregulation of antioxidant superoxide dismutase 2 (SOD2) and increased protein oxidation, occurred in podocytes and were normalized by C3aR blockade. In cultured podocytes, C3a induced cAMP-dependent mitochondrial fragmentation. Alterations of mitochondrial membrane potential, SOD2 expression, and energetic metabolism were also found in response to C3a. Notably, C3a-induced podocyte motility was inhibited by SS-31, a peptide with mitochondrial protective effects. These data indicate that C3a blockade represents a potentially novel therapeutic strategy in DN for preserving podocyte integrity through the maintenance of mitochondrial functions.


Subject(s)
Complement C3a/metabolism , Diabetic Nephropathies/pathology , Podocytes/pathology , Receptors, Complement/antagonists & inhibitors , Animals , Complement Activation , Cyclic AMP/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Disease Models, Animal , Kidney Glomerulus/pathology , Mice , Mitochondria/metabolism , Oxidative Stress , Podocytes/metabolism , Receptors, Complement/metabolism , Superoxide Dismutase/metabolism
19.
Cell Transplant ; 29: 963689720965467, 2020.
Article in English | MEDLINE | ID: mdl-33663249

ABSTRACT

Mesenchymal stromal cells (MSCs) are emerging as a novel therapeutic option for limiting chronic kidney disease progression. Conditioned medium (CM) containing bioactive compounds could convey similar benefits, avoiding the potential risks of cell therapy. This study compared the efficacy of nonrenal and renal cell-based therapy with the corresponding CM in rats with renal mass reduction (RMR). Infusions of human kidney stromal cells (kPSCs) and CM-kPSCs, but not umbilical cord (uc) MSCs or CM-ucMSCs, reduced proteinuria and preserved podocyte number and nephrin expression in RMR rats. Glomerular fibrosis, microvascular rarefaction, and apoptosis were reduced by all treatments, while the peritubular microvascular loss was reduced by kPSCs and CM-kPSCs treatment only. Importantly, kPSCs and CM-kPSCs reduced NG2-positive pericytes, and all therapies reduced α-smooth muscle actin expression, indicating reduced myofibroblast expansion. Treatment with kPSCs also significantly inhibited the accumulation of ED1-positive macrophages in the renal interstitium of RMR rats. These findings demonstrate that the CM of ucMSCs and kPSCs confers similar renoprotection as the cells. kPSCs and CM-kPSCs may be superior in attenuating chronic renal injury as a cell source.


Subject(s)
Renal Insufficiency, Chronic/physiopathology , Stromal Cells/metabolism , Animals , Disease Models, Animal , Humans , Rats
20.
JCI Insight ; 4(18)2019 09 19.
Article in English | MEDLINE | ID: mdl-31534055

ABSTRACT

Thyroid hormone (TH) signaling is a universal regulator of metabolism, growth, and development. Here, we show that TH-TH receptor (TH-TR) axis alterations are critically involved in diabetic nephropathy-associated (DN-associated) podocyte pathology, and we identify TRα1 as a key regulator of the pathogenesis of DN. In ZSF1 diabetic rats, T3 levels progressively decreased during DN, and this was inversely correlated with metabolic and renal disease worsening. These phenomena were associated with the reexpression of the fetal isoform TRα1 in podocytes and parietal cells of both rats and patients with DN and with the increased glomerular expression of the TH-inactivating enzyme deiodinase 3 (DIO3). In diabetic rats, TRα1-positive cells also reexpressed several fetal mesenchymal and damage-related podocyte markers, while glomerular and podocyte hypertrophy was evident. In vitro, exposing human podocytes to diabetes milieu typical components markedly increased TRα1 and DIO3 expression and induced cytoskeleton rearrangements, adult podocyte marker downregulation and fetal kidney marker upregulation, the maladaptive cell cycle induction/arrest, and TRα1-ERK1/2-mediated hypertrophy. Strikingly, T3 treatment reduced TRα1 and DIO3 expression and completely reversed all these alterations. Our data show that diabetic stress induces the TH-TRα1 axis to adopt a fetal ligand/receptor relationship pattern that triggers the recapitulation of the fetal podocyte phenotype and subsequent pathological alterations.


Subject(s)
Diabetic Nephropathies/pathology , Gene Expression Regulation, Developmental , Podocytes/pathology , Signal Transduction/genetics , Thyroid Hormone Receptors alpha/genetics , Triiodothyronine/metabolism , Animals , Cell Cycle Checkpoints , Cell Line , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/blood , Down-Regulation , Humans , Iodide Peroxidase/metabolism , Male , Mice , Podocytes/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Rats, Zucker , Streptozocin/toxicity , Thyroid Hormone Receptors alpha/metabolism , Triiodothyronine/administration & dosage , Triiodothyronine/blood , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...